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Abstract- Fatigue- and fracture-related cracks are to be expected with the large number offasteners
present in aircraft StructUNS. Therefore, contact stresses around the fastener holes and stress
intensity factors associated with edge cracks are critical concerns in damage-tolerant designs.
Mechanical joints consisting of many fasteners with a staggered pattern further complicate the
already rather complex analysis for single-fastener joints. Load distribution among the fasteners
significantly influences the failure load of multi-fastener joints. Most existing analyses are confined
to single-fastener joints, and the data available for multi-fastener joints are rather limited. Very few
experimental and/or analy6cal/numerical investigations of contact stresses for mechanical joints
with staggered fasteners exist in the literature. Therefore, the accurate prediction of contact stresses
(load distribution) and stres:; intensity factors associated with edge cracks is essential for the reliable
design of such mechanicaljo:nts. This study concerns the development ofan analytical methodology,
based on the boundary collocation technique, to determine the contact stresses and stress intensity
factors required for strength and life prediction of bolted joints with many fasteners. It provides an
analytical capability for detl:rmining the contact stresses in mechanically fastened composite lami­
nates while capturing the effects of finite geometry, presence of edge cracks, interaction among
fasteners, material anisotropy, fastener flexibility, fastener-hole clearance, friction between the pin
and the laminate, and by-pass loading. Also, it permits determination of the fastener load distri­
bution, which significantly influences the failure load of a multi-fastener joint. © 1998 Elsevier
Science Ltd.

INTRODUCTION

Mechanical fasteners provide the primary means for transferring load among components
in the construction of aircraft structures. However, they are associated with high stress
concentrations leading to failure modes ofnet-section, bearing, and shear-out in composites
and to crack initiation from the hole boundary in metals. Therefore, assessment of the
stresses around the fastener holes and the stress intensity factors associated with edge cracks
is critical for damage-tolerant designs. Because of the presence of unknown contact stresses
and the contact region between the fastener and the laminate, the analysis of a pin-loaded
hole is considerably more complex than that of a traction-free hole. In the presence of
cracks, both the strength and crack growth depend upon the stress field at the tip of the
crack, which is characterized by the stress intensity factors. The distribution of the contact
stresses along the boundary is critical for determining the stress intensity factors. Therefore,
accurate determination of the contact stresses and the stress intensity factors associated
with such loaded holes in mechanically fastened joints is essential to reliable strength
evaluation and failure prediction.

The stress state in a mechanical joint is dependent primarily on the geometry of the
bolted laminates, loading conditions, material anisotropy, fastener-hole clearance, fastener
flexibility, and the friction between the fastener and the laminate. Mechanical joints con­
sisting of many fasteners with a staggered pattern further complicate the already rather
complex analysis for singlt:-fastener joints. Load distribution among the fasteners sig­
niificantly influences the failllfe load of multi-fastener joints. The presence of the unknown
contact stress distribution GLnd the contact region between the fastener and the laminates
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and the interaction among the fasteners result in a complex nonlinear problem. In the case
of multi-fastener joints, the commonly accepted approach is based on first determining the
load distribution among the fasteners in order to identify the critical (most highly loaded)
fastener for a subsequent single-fastener analysis for local stress distribution. However, this
type of analysis disreguds the interaction among the fasteners located in close proximity
to each other.

Although a considerable amount of work on the behavior of composite joints with a
single fastener has been reported in the literature, experimental and analytical/numerical
consideration of multi-fastener joints is rather limited. The majority of the experimental
investigations are con,;erned with two fasteners in tandem. Rowlands et al. (1982), and
Hyer and Liu (1984) obtained the isochromatic fringe patterns in their investigations of
such a configuration. However, they could not determine the spatial distribution of the
contact stresses around the pin-loaded holes from the photoelastic measurements. Exper­
imental investigations concerning complex fastener patterns report only the failure load.
These results indicate that the failure load per fastener decreases with increasing complexity,
i.e. the joint efficiency decreases with an increasing number of fasteners.

Except for a study by Griffin et al. (1994), analytical/numerical models concerning the
stress and load distribution of mechanical joints with staggered fasteners are non-existent
because of the required complexity. By utilizing the appropriate symmetry conditions,
Griffin et al. considewd a row of staggered fasteners through a finite element model with
gap elements. In the case of mechanical joints with fasteners in tandem and/or parallel to
each other. Xiong and Poon (1994) and Eriksson et al. (1995) presented results based on a
two-stage analysis. The analytical approach by Xiong and Poon utilizes a variational
formulation in conjunction with complex stress functions introduced by Lekhnitskii (1968)
for anisotropic plates with a single hole. This approach considers each laminate of the
joint separately. Their coupling is achieved through the fastener displacements, which are
permitted only in the direction of loading. In this approach, the presence of multiple
fasteners is included in an average sense because of the limitation of the variational formu­
lation. The first stag~ of their analysis provides the local deformation along the hole
boundaries of one of:he laminates subjected to the external boundary conditions, and the
prescribed cosinusoidal bearing fastener deflections are imposed as displacement constraints
in the subsequent anaLysis to determine the contact stresses (fastener loads) and the contact
region in the second laminate. Subsequently, these fastener loads are imposed as prescribed
cosinusoidal bearing stress for the first stage of the analysis, and the iterative process
continues until constraint conditions are satisfied.

The approach by Eriksson et al. (1995) first establishes the fastener load distribution
to identify the most critical fastener site and then solves for the stress distribution around
this fastener hole. The fasteners and holes are not modeled explicitly in the first stage of
the finite element analysis, however, they are represented by spring elements that are
connected to node points on the lower and upper laminates. While disregarding the influence
of the contact stress on the interaction among the fasteners, the subsequent finite element
analysis provides the contact stresses and the contact region for a pin-loaded hole.

In addition to the aforementioned analyses, Oplinger (1978) determined the stress
distribution in an orthotropic laminate subjected to a uniform load normal to a single row
of pin-loaded holes under certain simplifying assumptions of symmetry and periodicity. In
the case of two fasteners in tandem, Rowlands et al. (1982) determined the contact stresses
by using an incremental finite element analysis with an iterative solution procedure. They
discussed the significance of variations in load distribution among bolts, friction, material
properties, spacing, pin-hole clearance and end distance on the contact stresses. Also,
Oplinger and Gandhi (1974) discussed the effects of multiple fasteners in parallel or series
on the mechanical joint design.

In the presence of radial edge cracks emanating from the boundary of the hole, the
load exerted by the fastener on the edge of the hole results in combined stress intensity
factors for the opening and sliding modes, K[ and K lI , respectively. A non-zero Kll occurs
due to non-symmetrical (around the crack line) deformation, even though friction (and
tangential contact stresses) may be zero. Tangential contact stresses are present only with
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friction. The transmission of these unknown contact stresses through an unknown contact
region and the presence of radial cracks render this problem highly nonlinear. Because of
the important of this subject, this problem has been investigated analytically and numeri­
cally. Except for the finite eiement modeling conducted by Chiang and Rowlands (1991),
none of the other analytical models are satisfactory. The main discrepancy among these
analytical models is that the distributions of the contact stresses and the contact region are
assumed to be known a priori. Therefore, they cannot be used to examine the effect of pin­
hole clearance and friction between the fastener and the hold boundary on the stress
intensity factors.

There are no experimental and analytical/numerical investigations of multi-fastener
joints with edge cracks in the literature. Also, it is apparent that analytical investigations
of bolted joints consisting of two or more fasteners without any symmetry requirements
are limited and inadequate. Furthermore, the stress intensity factors for multi-fastener
joints with potential edge c:-acks are needed in order to employ damage-tolerant design
concepts during the design process. Thus, a comprehensive analysis methodology is required
in order to predict the contact stresses (load transferred by each fastener) and the stress
intensity factors associated with edge cracks in mechanical joints with arbitrarily located
fasteners. Although finite element analysis is useful in the evaluation of a complex joint
geometry, it is not suitable for iterative design calculations for optimizing laminate con­
struction in the presence of single and multiple fasteners. Therefore, this study is concerned
with the development ofan analytical/numerical approach for the assessment of the contact
stresses, the contact regions, and the stress intensity factors for mechanical joints consisting
of arbitrarily located multiple fasteners with or without edge cracks.

PROBLEM STATEMENT

As shown in Fig. 1, the upper and lower laminates, representing two different regions,
joined with K numbers of fasteners are subjected to uniform normal stresses, (11 * and (12 *,
respectively. The regions representing the laminates consist of sub-domains, in each of
which is a fastener. The snper- and subscripts refer to the regions and sub-domains,
respectively. The length and width of the kth rectangular sub-domain in the pth region are
denoted by L~ and H~, respectively, with their corresponding thickness, t~. The position of
the fastener in relation to the boundaries of the sub-domains is specified by l~ and hf. As
illustrated in Fig. 2, the hok radius, ah which is slightly larger than that of the fastener,
R., in the kth sub-domain, leads to a clearance of Ak' The hole and fastener radii remain
the same for the kth sub-domain of each region.

Cartesian (Xk' Yk) and polar (rh Ok) coordinate systems, whose origins are located at
the center of the fastener hole in the kth sub-domain, are utilized in the statement of the
boundary conditions. As the joint is subjected to external loading, each fastener exerts the
loading on the hole boundary through the contact region of the lower and upper laminates.
As shown in Fig. 2, this region, whose extent is not known, consists of no-slip and slip
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Fig. 1. Description cf a mechanical joint with arbitrarily located multiple fasteners.
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k-th fastener

Befon~ loading After loading in the p-th region
Fig. 2. Position of a fastener before and after loading in relation to the hole boundary.

zones because of the presence of friction between the hole boundary and the fastener. The
angles '1)k and l/!)b and '1~k and t/J~k define the extent of the no-slip and slip zones. The
unknown load exerteci by the kth fastener in the pth region is composed of Ffck and F~k

along the Xk and Yk directions. In each sub-domain, the fastener forces exerted on the lower
and upper laminates are equal and opposite to each other. The magnitude of the fastener
forces are dependent on the relative displacement of the lower and upper laminates. Their
relative displacement consists of the deformation of the hole boundaries and the fastener
deflections. At the intersection of the hole boundary and the line of action for the fastener
force in the kth sub-domain belonging to the pth region, the components of the local
displacements are represented by Afck and A~k along the Xk and Yk directions, respectively.
The kth fastener compliance, Sk> linearly relates the fastener deflection to the fastener force.
Although the physical interpretation of the fastener compliance is obvious, its value depends
on the assumptions involved while modeling the fastener as a short beam. In this study, the
approach presented by Xiong ad Poon (1994) is adopted to calculate the compliance of the
k fastener

(1)

where the shear coefficient parameter, K, has a value of 1.33 and Eklk are GkAk> the bending
and shear rigidity, respectively.

The boundary conditions along the fastener hole can be stated as

zik(ab Ok) = (Afck +bpZSkFfck) cos (h + (A~k +bpZSkF~k) sin Ok - Ak Ok E [ -l/!~b '1~k] (2a)

~(abOk) = (A~k +bpZSkFfck) sin Ok + (A~k + bpZSkF~k) cos Ok Ok E [-l/!)k' '1)k] (2b)

(2c)

(2d)

where bpz is the Kronecker delta with p = 1, 2. In the no-slip zone, both the normal and
tangential displacement components, u; and v;, respectively, of the hole boundary are equal
to those of the fastener. In the slip zone, the shear stress, rL develops and the difference in
the normal displacement components ofthe hole boundary and that of the fastener vanishes.
The shear stress is related to the normal stress, aL by adopting a Coulomb friction model
with coefficient of friction, f. The angles 111k and t/J)b and ~k and t/J~b as well as the
components of the fa:;tener displacement, Afck and A~b and force, Ffck and F~b are determined
as part of the solution for each region by imposing the following constraints:
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aHab Bk) < 0 Bk E [ -IjJL Iflk] aHab -1jJ~k) = aHab Iflk) = 0

IrHab -'71;;)--rHab ifI~)1 = 0 I-rHab -1jJ1;) -rHab 1jJ)~)1 = 0 (3)

in which the superscripts - and + denote the angles associated with the no-slip and slip
zones, respectively. Also, the condition of equal and opposite kth fastener forces in each
region is enforced as

(4)

Imposing the boundary and continuity conditions and the additional constraints results in
a nonlinear load transfer problem.

SOLUTION METHOD

The solutions to the contact stresses and the extent of the contact region, as well as
the components of the fastener displacement and the force exerted by the fastener in the
lower and upper laminates, are obtained by employing the boundary collocation technique.
This method utilizes the complex analytic functions introduced by Lekhnitskii (1968) for
analyzing the simply-connected anisotropic domains, which are infinite in extent. Applying
the concept of the modified mapping collocation (MMC) technique introduced by Bowie
and Neal (1970) to these analytic functions permits the imposition of the boundary con­
ditions associated with a finite domain. In this domain, the field equations are satisfied
exactly, however, the boundary conditions are satisfied approximately at the collocation
points. In the case of a region with multiple internal boundaries, as shown in Fig. 3, the
region is partitioned into simply-connected sub-domains. The continuity of the dis­
placement and traction components is enforced at the collocation points common to the
boundaries of the sub-domains. The external boundary of the kth sub-domain, Bb is defined
with respect to the Cartesian coordinates (Xb Yk)' As shown in Fig. 3, the origin of this
coordinate system coincides with the center of the internal domain bounded by r K' Its
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Fig. 3. Multiply connected finite region partitioned into K simply-connected sub-domains.
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origin is located at (Xb Yk ) with an orientation angle of (k in reference to the global
coordinate system (X, Y).

As shown in Fig. 4, a region partitioned into sub-domains containing "external",
"internal" and "common" types of collocation points associated with the external, internal
and common boundaries of the sub-domains, respectively. Prescribed boundary conditions
of stress and/or displacement components are imposed at the "external" and "internal"
collocation points. The continuity of the stress and displacement components is enforced
at the "common" coLocation points.

Based on Lekhnitskii's (1968) solution method within the two-dimensional theory of
elasticity concerning anisotropic laminates, the normal and tangential stress and dis­
placement componen:s at the jth collocation point of the kth sub-domain in a region (Fig.
4) are expressed in matrix form as

(1k(X£,yk) = 2 Re [Sk Pk cPk Xk]

Uk (X£, yk) = 2 Re [tk Pk cPk m Xk]

where the vectors (1k and Uk are defined as

(5)

(6)

with (J, rand u, v representing the normal and tangential stress and displacement
components, respectively. The transformation matrices, Sk and t b are given by

and

sin2(D£'Xk)

COS(D£, Xk) sin(D£, Xk)

2 cos(Dk, Xk) sin(D£, Xk) ]

(cos2 (D£, Xk) - sin2 (Di, Xk))

[
cos(D{,xd

t k = .
- sin(D£, Xk)

sin(D£, xd ]

COS(D£, Xk)

in which Ok represent~: the unit normal to the boundary at the jth collocation point of the
kth sub-domain. The matrices Pk and Pb reflecting the characteristics of the material
properties, are expres:;ed as

"extemcll" Bk XN

~k
J'

Y)4Xk r N"common"

Y~M Y~ BN
k-I

XM Xk-1"internal"

BM Bk_1

Fig. 4. Type of collocation points in a partitioned finite region.
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(7)

where the variables Pik and qik are defined by

and flik are the roots of the characteristic equation for the kth sub-domain given by

(8)

(9)

For physically acceptable values of the compliance coefficients, d:;, the roots of the charac­
teristic equation are either distinct or equal to their complex Conjugates. The in-plane
laminate compliance coefficients, at (i,j = 1,2,6), relating the stress and strain components
in the kth sub-domain as

al61ja_ujaZ6 ayy

a66 axy k

(10)

can be expressed in terms of the elastic constants, EL , ET , GLT and ULT, defined in the
material coordinate system. The fiber orientation angle, eb is defined relative to the xk-axis.
The subscripts Land T denote the longitudinal and transverse directions relative to the
fibers. For the anisotropic kth sub-domain with N layers, the compliance coefficients are
t:stablished from

N

ak = Ak I with Ai) = L fll'J) ten)
n=1

(11)

in which tin) is the thickness of the nth lamina and f2~) relates the stress and strain
components for the nthorthotropic lamina referenced to the coordinate system (XbYk)'

The matrix 1'b whose derivative is denoted by 1'k' is defined as

(12)

where

in which (Ik and (Zk are the functions mapping the internal boundary to a unit circle and
the outer boundary of the sub-domain to the exterior of the unit circle. In the case of a
circular internal boundary, the mapping functions are expressed as

J Z Z ZZlk ± Zlk - ak - fllkak

ak - ifllk
with I = 1,2 (13)

in which ak denotes the radius of the kth fastener hole and i = ",;=t. As given by Bowie
(1956), these functions become
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with I = 1,2 (14)

for a hole with two radial edge cracks of length Ck' The complex characteristic coordinates
for the kth sub-domain, Zlk and Z2b are defined by

Zlk = Xk + fllkYk with I = 1,2.

The constant matrices II and m are defined by

(15)

[
1 0 OJI = and
010

m = [1 0
o 1

(16)

The vector 'Xk consists of the unknown coefficients represented by rt.b f3b 'Yk and 11k as

in which

and

(17)

(18)

The unknown complex coefficients, rt.ib f3jb 'Yk and I1b are determined by enforcing the
boundary conditions at the collocation points on the boundary (Fig. 4). The unknown
complex coefficient, ')Ib permits rigid-body translation of the sub-domain. Therefore,
additional displacement constraints are required as boundary conditions to prevent rigid­
body movement. In order to impose the boundary and constraint conditions associated
with the boundary of the fastener hole within the scheme of a boundary collocation
formulation, the components of the kth fastener displacement are expressed as an unknown
complex variable,

(19)

Based on the solution for a pin-loaded infinitely large anisotropic plate given by Lekhnitskii
(1968), the components of the force, Fb exerted by the kth fastener on the hole boundary
are represented as

FXk = Re [4ni(fl1k()(Ok + fl2kf30k)]

Fyk = Re [4ni«()(Ok + f30k)]' (20)

The continuity of stress and displacement components at the ith and jth "common"
collocation points of !:he (k-l)th and kth sub-domains, respectively (Fig. 4), is enforced
as

Uk_' (xL"YL,)-Uk(Xi,yL) = 0

O'k_I(Xk_1>yL,)-O'k(Xtri) = o.

The conditions for sir.gle-valued displacement components, expressed as

1m [Plkrt.Ok +P2kf30k] = 0

1m [qlkrt.Ok+q2kf3od = 0

(21)

(22)
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along with the boundary conditions at each collocation point, result in an over-determined
system of algebraic equations in the form

where the matrix C is composed as

Re[Cxl = b (23)

[
Cl C'

C= cX 0
(24)

in which the complex sub-matrix CP, of order 2(M] +, ... ,+MK) by K(4N +3), represents
the terms associated with the unknown coefficients in vector xP of the pth region, with
p = 1,2 corresponding to the upper and lower laminates. The coupling sub-matrices, C~,
arise because of the unknown fastener displacements, Ll{, common to both the upper and
lower laminates (regions). The unknown vector, X, in eqn (23) becomes

(25)

with xP defined as

(26)

in which xf is given by eqn (17) for each region. The vector Xtl consists of the unknown
fastener displacements. Also, in eqn (23), the known vector, b, of order 4(M] +, ... ,+M K)

and containing the prescribed boundary conditions, is expressed as

(27)

The number of collocation points associated with the kth sub-domain is denoted by M k

and K is the total number of sub-domains in the region.
Imposition of the condition for single-valued displacement components given by eqn

(22) permits the determination of f30k in terms of aOk> thus leading to the modification of C
and Xin eqn (23) through the elimination of f3ok' The modified forms of the matrix C and
Xare represented by C* and X*, resulting in

Re [C*x*l = b. (28)

In order to perform the numerical calculations with real variables, this system of equations
is rewritten as

Dd =b (29)

where the real matrix D, of size 4(M1+, ... ,+MK ) by 4K(4N+2), and the real vector d, of
size 4K(4N+2), are defined as

D = [C* - C*] and d = [x*i*l

in which
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C* = Re [C*]

x* = Re [x*]

and C* = 1m [C*]

and i* = 1m [x*]·

The solution to this over-determined system of equations (29) can be obtained through
either the least-squares procedure in conjunction with the Gauss elimination method or the
singular value decomposition method. However, the matrix 0 may be ill-conditioned if the
collocation points are subject to mixed boundary conditions involving both the dis­
placement constraints and tractions, which may differ in value by orders of magnitude.
Therefore, the norm of each row in 0 is scaled by pre-multiplying the system of equations
(29) with a matrix, S, resulting in

(30)

where

Os = SO and bs = Sb

in which

Based on an extensive numerical experimentation, the scaling parameters, Si, are assigned
a value of unity and En/Zi for collocation points involving traction conditions and dis­
placement constraints, respectively. The parameter En is the Young's modulus of the
material in the direction normal to the boundary, and Zi is the distance between the ith
collocation point and the origin of the coordinate system.

The solution by the least-squares procedure requires the pre-multiplication of eqn (30)
by Dr, resulting in

O*d = b*

where the symmetric matrix, 0*, with full rank and b* are given by

0* = OrOs and b* = Orbs.

(31)

Employing the Gauss elimination method yields the solution to eqn (31) after approximately
(K(4N+2W/3 number of operations while requiring the storage of (4N+2)/2(4N+3)
numbers.

The solution to eqn (30) by singular value decomposition in the sense of a least squares
approximation is obtained as

(32)

where V is the orthogonal matrix of size 2K(4N+2) by 2K(4N+2) ; W is a diagonal matrix
of size 2K(4N+2) by 2K(4N+2) consisting of singular values, Wi; and U is the column
orthogonal matrix of ,ize 2(M1+, ... ,+M 2) by 2K(4N+2). As part of the solution, the
ratio of largest to sma'Jest singular values can be used as an indicator for the condition of
the matrix. The matnx becomes ill-conditioned for large ratios. This solution method
requires the storage of (M1+, ... ,+ M K) x K(4N+2) entries of the matrix Os and about
2(M1+, ... ,+MK ) X [K(4N+2)f +4[K(4N+ 2)]3 number of operations. Although very
powerful, this method loses its effectiveness for matrices with a much larger number of
rows than columns.

Solving for d in eqn (30), by either of these methods, yields unknown coefficients, thus
permitting the pointwise calculation of stress and displacement components in the region.
Comparison of these calculations with the prescribed boundary conditions establishes the
accuracy of the analysis. The error associated with the stress and displacement components,
E(1 and Em respectively, is quantified in the sense of a root mean square as
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(33a)

(33b)

for the "external" and "internal" collocation points. The superscript * denotes the pre­
scribed values of the normal and tangential stress and displacement components. For the
"common" collocation points, these expressions are modified in the form

(34a)

(34b)

The parameters L;, with i = 1, 4, denote the total number of collocation points involving
boundary conditions on the normal and tangential stress and displacement components,
respectively.

After invoking the conslraint conditions (4) concerning the components of the fastener
forces into the resulting linear system of equations (23), its solution subject to the constraint
conditions (3) is obtained through an iterative scheme. The iterative scheme begins with
thl~ initial estimate of the angles I'/)k and lj;)k defining the slip zone and I'/ik and lj;ik defining
the no-slip zone of the contact region associated with the kth fastener in the pth region. If
the constraint conditions specified in eqn (3) are not satisfied, these angles are adjusted by
examining the variation of the stress and displacement fields along the hole boundary.
When the constrain conditicn associated with the collocation point is violated, the nature
of the boundary conditions is changed in order to eliminate the constraint violation. In
correcting the boundary conditions, the collocation points located in the non-contact
region, contact regions, and its no-slip zone are examined for the presence of no overlap
between the fastener and the hole boundary, compressive stress, and no slip. For the
collocation point located in the non-contact region, the condition of no overlap requires
that

(35)

If the collocation point is as>ociated with the correct region, the condition of compressive
normal stress is satisfied by

(36)

In the presence of friction, for the collocation point located in the no-slip zone of the
contact region, the condition of no slip is applied as

(37)

This process continues until the variation of the angles describing the contact region is
confined to a few collocation points. The converged solution provides the stress and
displacement field within each region and, thereby, the forces exerted by each fastener
through the integration of contact stresses over the contact region.
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The solution to the unknown coefficients associated with each region, rxfb f3fb ){ and
/::ik, yields the explicit expressions for the analytic functions <IY;k(Zlk) and ~k(Z2k) expressed
in the truncated series ::orm in terms of the mapping functions ~ lk and ~2k as

N

<IY;k(~ lk) = rxbk In ~ lk + I. (O(~nk~lt + 0(~k~1k)
n=l

N

~k(~2k) = Pbk In ~2k + I. (fJi'-nk~2t+0(~k~2k)
n=l

(38)

leading to the expressions for the stress and displacement components in the kth sub­
domain of the pth region

(J~x = 2 Re [lln<IY;'k(Z lk) +lli~«k(Z2k)]

(J~y = 2 Re [<IY;'k(Z lk) +~'k(Z2d]

(J~y = - 2 Re [1l~k<IY;'k(Zlk) +llik~'k(Z2k)]

u~ = 2 Re ~k<IY;k(Zlk)+ ~k~k(Z2k) +){]

u~ = 2 Re [q)k<IY;k(Z lk) +qJ2k~k(Z2k) - i){] (39)

in which a prime denotes differentiation with respect to the corresponding argument. For
a line crack or inclusion in the kth sub-domain, the stress intensity factors K j and Kn are
obtained directly as ddined by Sih et ai, (1965)

(40)

in which zt refers to the crack tip.

NUMERICAL RESULTS

This study presents numerical results for two different joint configurations in order to
establish the generali':y of the present approach. Validation of the present method can be
found in a report by Madenci et al. (1996). The first configuration concerns a composite
laminate fastened to an aluminum plate with eight uniformly distributed fasteners. Because
of the presence of symmetry, only half of the joint with four fasteners is explicitly considered
(Fig. 5). Each fastenl~r has a radius of ak = 3 mm, with fastener-hole clearance of Ak = 0

symmetry line

2 r composite laminate [aluminum plate

"*+-~3C ·0 ...07 115 ;,1-"*
Fastener 1 2 3 4

Fig. 5. A composite laminate fastened to an aluminum plate with eight uniformly located fasteners.
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Fig. 6. Radial stress distribution along the fastener-hole boundaries in the composite laminate.

(k= 1,4). The laminate lay-up is quasI-Isotropic [(±45/0/90h]s with EL = 147 GPa,
ET = II GPa, GLT = 5.3 GPa, and VLT = 0.3. The compliance of a titanium fastener is
computed using eqn (1) with Ek = 110 GPA and Vk = 0.29. The dimensions of the sub­
domains in the composite laminate and the aluminum plate are specified by Ll = L~ = 30
mm, Li = Lr = 44.5 mm, L~; = 30 mm (p = I, 2 and k = 2, 3), and H~ = 28.5 mm, and
th(~ir thickness is t~ = 3.046 mm (p = 1,2 and k = I, 4). The positions of the fasteners in
relation to the boundaries or each region are given by ftlk = 13.5 mm (p = 1,2 and k = I,
4) and If = 15 mm (p = 1,2 and k = 1,4, with k -:f- I andp -:f- 2), and Ii = 29.5 mm. The
aluminum plate and the laminate at the free ends are subjected to a uniform stress of
0'* = 28.8 MPa. Each of the regions includes 344 collocation points, 164 and 180 along the
external and hole boundaries, respectively. The number of terms in series representation,
N, is equal to 10, leading to a total of 6082 unknowns in the system of equations (30). In
the absence of friction, the variation of the normalized radial and circumferential stresses,
O'rr(ak, ())/O'b and O'ee(ab ())/O'b, with O'b = 0'*HV2ak along the boundaries of the fastener holes
in both the aluminum and the composite plate is shown in Figs 6-9. It is apparent from the
figures that the usual assumption of cosinusoidal radial (bearing) stress distributions is
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'-'
~
~ 0.6b
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'" 0.4'"(lJ
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'""0 0.2(lJ
N

;.;
§ 0

Z
-0.2

0 30 150 90 120 150 180 210 240 270 300 330 360

8, degrees
Fig. 7. Circumferential stn:ss distribution along the fastener-hole boundaries in the composite

laminate.
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Fig. 8. Radial stress distribution along the fastener-hole boundaries in the aluminum plate.
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Fig. 9. Circumferential stress distribution along the fastener-hole boundaries in the aluminum plate.
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Fig. 10. Variation of the normal stress along the loading direction in the composite laminate.

not valid for all the fasteners. For fasteners near the loaded ends, the peak radial and
circumferential stresses increase significantly. The nature of the interaction among the
fasteners is described in Fig. 10 by the variation of the normal stress in the x-direction. The
loads exerted by each fastener are computed to be F d = 631 N, FyI = 14 N, FX2 = 566 N,
Fy2 = 2 N, F.<3 = 52B N, Fy3 = -7 N, FX4 = 681 N, and FY4 = -20 N. The contact region
associated with each fastener is established by the computed angles of t/J~k and IfJ.b and the
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Table I. Angles specifying the contact region for each fastener (degrees)

Fastener number

1807

Composite laminate
Aluminum plate

84
90

90
92

P

90
90

2
'12

90
90

90
90

3
'12

90
90

90
90

4

88
88

r-----.........-----,--- ---- -- -----
Composite 1- --,

Steel

symmetry line
(v=const, (jnt= 0)

y

~
........-+--t-rl.~ 0

~

Fig. II. A composite lamir.ate with edge cracks, fastened to a steel plate with staggered fasteners.

results are presented in Table 1. The non-symmetrical contact regions occur because of the
fastener forces exerted in the y-direction.

The second configuration concerns a composite laminate fastened to a steel plate with
three fasteners (Fig. 11). The laminate lay-up is [0~o/±45~/90~] with EL = 202.75 GPa,
ET = 6.97 GPa, GLT = 5.27 GPa, and VLT = 0.26. Each fastener hole has a radius of
aj = 9.529 mm, with a fastener-hole clearance of Ak = 0 (k = 1,3). The fasteners are
assumed to be rigid. The dimensions of the sub-domains in the steel plate are specified by
lIT = 57.2 mm, Li = 200.025 mm, Hi = 95.3 mm, and Li = 100.0125 mm, and their
thickness is tl = 25.4 mm. The positions of the fasteners in relation to the boundaries of
each region are given by hi = 19.0 mm, n= 100.0125 mm, hi = 76.2 mm, and n= 76.2
mm. The dimensions of the sub-domains in the composite laminate are specified by
Ell = 66.625 mm, Ll = 95.25 mm, H1 = 63.55 mm, and L1 = 47.625 mm, and their thick­
ness is tl = 25.4 mm. The positions of the fasteners in relation to the boundaries of each
n:gion are given by h[ = 19.0 mm, n= 47.625 mm, h1 = 44.45 mm, and n= 23.8125 mm.
One of the fastener holes in the composite laminate has radial edge cracks perpendicular
to the direction of loading, with length Ct. The steel plate is subject to zero displacement
constraints at the bottom end, while the laminate is loaded by an integral force,
P = 1.163· 107 N. In place of a specified stress distribution, a condition of uniform vertical
displacements of joints on the symmetry line is imposed. The number of collocation points
varies from 404 (164 on the external boundary and 240 on the hole) for the sub-domains
in the steel plate, to 1784 (784 on the external boundary, 360 on the hole, and 640 on the
cracks) for the sub-domain with cracks in the composite laminate. In order to ensure the
accuracy of the numerical results, the number of terms in the series representation, N, is
chosen as 40 for the region with the cracks and 15 for other regions. This leads to a total
of 9000 unknowns in the governing system of eqns (30). The non-uniform location of the
collocation points along the: crack is required to obtain accurate results. In reference to the
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Fig. 12. Collocation points associated with the sub-domains of the composite laminate and the
aluminum plate with three fasteners.

Table 2. Comparison of th" stress intensity factors obtained from the boundary collocation technique with those
from the finite element method (MPaJ';)

Boundary collocation Finite element
Crack length, c, technique method

(mm) K, KII K j KII

3 1338.7 -109.4 1350.2 -131.9
5 1400.3 -90.3 1434.6 -64.2

10 1614.9 22.2 1646.3 -69.7
15 1768.4 62.2 1932.5 -34.7
20 2427.4 11.0 2468.7 -23.6

3000
19 0
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Q" 2500 ~:E
~- 2000 0...~
.s *u

1500~ ~
.q fll

'" 1000I::

.~ * Boundary collocation method
'"'" 500,g 0 Finite element method

CI:l

0
0 5 10 15 20 25

Crack length, c l ' mm
Fig. 13. Variation c,f the stress intensity factors as a function of the crack length for the opening

mode.

hole boundary, as shown in Fig. 12, the location of the collocation points along the crack
is determined using

where Cdenotes the distance from the hole boundary and p is the parameter specifying the
non-uniform spacing between the collocation points, with (MIL + i) corresponding to the
number of the collocation point. The stress intensity factors for different crack lengths are
presented in Table 2 and are shown in Fig. 13 in comparison with those obtained by the
finite element method. The finite element analysis was conducted by using a modified
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Fig. 14. Stress distribution around the fastener hole with edge cracks in the composite laminate.

1.5

.c

~ " cree IcrbCP

lll- 0.5 "'-'
b

'" 0 -Q)
"til

til "Q)

1;; -0.5
,

"0
" Orr lOb ."

~ -1 " - -"
~

~'"'' -...... - .... , .. """

E -1.5 Boundary collocation method
0
Z Finite element method

-2
o 30 60 90 120 150 180 210 240 270 300 330 360

€I+90, degrees
Fig. 15. Stress distribution around the central fastener hole in the steel plate.

version ofPAPST, a program originally developed by Hilton and Wilmarth (1982), with 12­
noded rectangular and 9-noded triangular isoparametric elements. The contact algorithm is
consistent with the preceding procedure described for the boundary collocation technique.
Elements of a size less than 1% of the crack length around the crack tip are used in order
to capture the singular stress field. The values for the stress intensity factors are obtained
by extrapolation from the stresses along the crack line. The variation of the normalized
radial and circumferential stresses around the central fastener hole, (Jrr(a, e)/(Jb and
oee(a,e)/(Jb with (Jb = Fx )2a[tJ, both in the steel and composite plate is shown in Figs 14
and 15. The comparison of the stress variation is favorable, except for the circumferential
stresses for the hole boundary with edge cracks in the composite laminate because of the
coarse mesh used for the finite element model of the corner (intersection of the crack with
the hole boundary). Also the variation of the normal stress in the y-direction (Fig. 16)
describes the nature of the interaction among the fasteners. The loads exerted by each
fastener are presented in Table 3 for various crack lengths.

CONCLUSIONS

Analytical/numerical investigations concerning the determination of both the contact
stresses and the stress intensity factors in mechanical joints with arbitrarily located multiple
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Fig. 16. Variation of the normal stress along the loading direction in the composite laminate.

Table 3. Fastener forces for different crack lengths (N)

Crack length, c\
(mm)

3
5

10
15
20

106,650
100,220
170,956
269,537
245,559

Left bolt

3,694,207
3,825,367
4,120,279
4,468,868
4,658,393

Central bolt
Fy

4,349,311
4,197,037
4,002,592
3,767,785
3,657,587

fasteners do not exist in the literature. This study eliminates this discrepancy while syn­
thesizing all of the various effects, such as finite geometry, fastener flexibility, fastener­
hole clearance, presence of edge cracks, friction, by-pass loading, and interaction among
fasteners, into a comprehensive design/analysis methodology suitable for fast design iter­
ations. Comparison cf the results from this analysis with various previous solutions pub­
lished by others demonstrates the accuracy of the present analysis. This analysis is a
significant improvem~nt over the previous analyses in regard not only to mechanically
fastened joints, but also stress concentrations in laminates with internal boundaries under
general boundary conditions. Also, it provides an accurate stress analysis, essential in
predicting the strength of the mechanical joint, by employing certain failure criteria, leading
to strength predictions with the test results available in the literature.

REFERENCES

Bowie, O. L. (1956) Analy:;is of an infinite plate containing radial crack originating at the boundary of an internal
circular hole. Journal of Mathematics and Physics 35, 60-71.

Bowie, O. L. and Neal, D. M. (1970) A modified mapping-collocation technique for accurate calculation of stress
intensity factors. InternG'lional Journal of Fracture Mechanics 6, 199~206.

Chiang, Y. J. and Rowlards, R. E. (1991) Finite element analysis of mixed-mode fracture of bolted composite
joints. Journal ofCompusites Technology and Research 13,227-235.



Analysis of composite laminates with multiple fasteners 1811

Eriksson, L. I., Backlund, J. and Moller, P. (1995) Design of multiple-row bolted composite joints under general
in-plane loading. Composites Engineering 5, 1051-1068.

Griffin, O. H., Jr, Hyer, M. W., Cohen, D., Shuart, M. J., Yalamanchili, S. R. and Prasad, C. B. (1994) Analysis
of multifastener composite joints. Journal of Spacecraft and Rockets 31, 278-284.

Hilton, P. D. and Wilmarth, D. D. (1982) PAPST-revision 2.0; revised documentation and theoretical manual,
Report to DTNSRDC.

Hyer, M. W. and Liu, D. (1984) Stw.ses in pin-loaded plates: photoelastic results. Journal ofComposite Materials
19,138-153.

Lekhnitskii, S. G. (1968) Anisotropic Plates. Gordon and Breach Science Publishers, New York.
Madenci, E., Shkarayev, S. and Sergeev, B. (1996) Analysis of composite joints with multiple fasteners. Final

Report to Federal Aviation Administration, Contract no. 94-G-029, The University of Arizona, Tucson.
Oplinger, D. W. (1978) On the structural behavior of mechanically fastened joints in composite structures.

Proceedings ofa Conference on Fibrous Composites in Structural Design, San Diego, California, pp. 575-602.
Oplinger, D. W. and Gandhi, K. R. (1974) Stresses in mechanically fastened orthotropic laminates. Proceedings

of the Second Conference on Fibrous Composites in Flight Vehicle Design, Dayton, Ohio, pp. 813-841.
Rowlands, R. E., Rahman, T. L., Wilkinson, T. L. and Chang, Y. I. (1982) Single- and multiple-bolted joints in

orthotropic materials. Composites 13, 273-279.
Sih, G. c., Paris, P. C. and Irwin, G. R. (1965) On cracks in rectilinearly anisotropic bodies. International Journal

of Fracture Mechanics 1, 189-203.
Xiong, Y. and Poon, C. (1994) A design model for composite joints with multiple fasteners. Aeronautical Note

IAR-AN080, National Research Council, Canada, NRC no. 32165.


